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Abstract

Epithelial-mesenchymal transition (EMT) is a key process in embryonic development and metastases formation
during malignant progression. This review focuses on transcriptional regulation, non-coding RNAs, alternative
splicing events and cell adhesion molecules regulation during EMT. Additionally, we summarize the knowledge
with regard to the small potentially druggable molecules capable of modulating EMT for cancer therapy.
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Introduction
Epithelial-mesenchymal transition (EMT) is a multi-step
morphogenetic process during which epithelial cells
downregulate their epithelial properties and upregulate
mesenchymal characteristics (Figure 1). Namely, static
epithelial cells lose cell to cell junctions and as a conse-
quence they lose apico-basal polarity to become migratory
mesenchymal-like cells. This process of down-regulation
of the epithelial phenotype mimics the normal develop-
mental process of gastrulation, in which cells from the
epithelial sheet of the ectoderm start to form the third
germinal layer, the mesoderm, whose migratory cells are
called mesenchymal cells. This process is therefore aptly
called the epithelial-mesenchymal transition, which is cur-
rently classified into three subtypes [1].
Type 1 EMT is associated with the original embryonic

development and also occurs during postnatal growth.
The steps of this EMT type are specific and well-defined.
Epithelial cells are cuboidal to cylindrical in shape and are
in contact with each other via adherent and tight junc-
tions. Primary migratory mesenchymal cells generated this
way may potentially go through a reverse step to become
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epithelia again. This step is called the mesenchymal-
epithelial transition (MET) and generates secondary
epithelia in the developing embryo [2]. Differentiated
cells in almost all organs in adults developed as a re-
sult of EMT-MET.
Type 2 EMT is initiated by injury and results in gener-

ation of fibroblasts to rebuild wounded tissues [3]. Dur-
ing inflammation fibroblasts and immune cells release
cytokines and other pro-inflammatory factors as well as
extracellular matrix proteins which results in stimulation
of cells to undergo EMT. If inflammation pathologically
persists, continuous EMT of normal epithelial cells can
result in fibrosis and organ damage [4].
Oncogenic type 3 EMT enables epithelial cells to ac-

quire invasive mesenchymal phenotype characteristics
which are essential in metastatic spread [5]. Typical de-
velopmental EMT features are recapitulated in onco-
genic EMT [6], however, they are less ordered and
coordinated. As a result of this disordered EMT, hybrid
phenotypes can often arise having the properties of both
epithelial and mesenchymal cell types [7].
Transcription factors regulating EMT
There are a number of transcription factors known to
be involved in the regulation of EMT. The most char-
acterized are ZEB 1 and ZEB 2, snail, slug and twist
(Figure 2).
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Figure 1 Epithelial-mesenchymal transition. Various mesenchymal cell types can be derived via EMT. The reverse mesenchymal-epithelial transition
can generate secondary epithelia.
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ZEB 1 and ZEB 2 are highly conserved zinc finger pro-
teins which can directly bind to the promoter regions of
target genes and thus repress the expression of E-cadherin
and some other epithelial markers [8] and induce the ex-
pression of vimentin and a number of other mesenchymal
markers [9]. ZEB 1 and 2 are induced by TGFβ, hypoxic
conditions and inflammatory cytokines, factors which
all initiate EMT. ZEBs play an important role in nor-
mal embryonic development and they are reported to
be upregulated in many tumors [10].
Snail and slug belong to the snail family of transcription

factors, with C-terminal zinc finger binding to E-boxes of
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Figure 2 Markers and regulators of EMT. During EMT complex changes
occur. These changes are influenced by the tumor microenvironment, tran
the regulatory regions of target genes [11]. Snail factors
repress E-cadherin expression by direct binding to its
promoter and can also repress other epithelial proteins in-
cluding desmoplakin and claudins. At the same time snail
proteins activate expression of pro-invasive genes (vimentin,
fibronectin, MMPs) promoting cell migration [12]. Like the
two ZEB transcription factors, snail and slug can be induced
by TGFβ, hypoxic conditions and other EMT-related signal-
ing pathways [13]. Snail transcription factors are not present
in normal epithelial cells, however they are found in the in-
vasive front of tumors and considered to be prognostic fac-
tors for poor survival in a number of carcinomas [11].
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The twist protein contains a basic/helix-loop-helix do-
main which provides for binding to DNA and dimerization.
Its C-terminal end contains a “twist box” responsible for
both transcriptional activation (e. g. for N-cadherin) and
repression (E-cadherin) [14]. Regulation of genes by twist
depends on its binding to other transcriptional factors,
post-translational modifications, and choice of partner for
dimerization. Twist is upregulated in human cancers and
its abundancy increases during tumor progression. Its
expression also correlates with higher tumor grade,
invasiveness, and metastasis, cellular processes being con-
sidered as prognostic factors for enhanced tumor aggres-
siveness, tumor recurrence, and poorer survival [11].
Remarkably, there is a significant overlap in the regu-

latory signals of these transcription factors. Namely, ex-
pression of ZEB factors is regulated by snail [15,16].
Snail in turn also increases the stability of twist which
then activates the transcription of slug [15,17]. This
interaction network may play a role in spatial and tem-
poral regulation of EMT.

EMT and metastatic cascade
One of the classical models for cancer metastasis is
Stephen Paget’s seed and soil hypothesis in which the
tumor cell is the seed and the organ in which the metasta-
sis grows is the soil [18]. This model implies that certain
tumor cells have an affinity to the particular organ which
provides a growth advantage to them. Thus the site of me-
tastasis is dependent on the affinity of the tumor for the
given microenvironment, which elegantly explains why
some organs (lung, liver, bone marrow) are particularly
prone to harbour metastases while others are not (intes-
tine, skeletal muscle, skin). After passing the endothelial
barrier, additional factors such as local growth factor pro-
duction play a role in stimulating the growth of these eva-
sive tumor cells [19]. According to this later expanded
model, metastasis formation starts when the primary ma-
lignant cell divides and once the cell mass has reached the
size of a few dozens cells, it sends out angiogenic signals,
thus leading to the ingrowth of blood vessels into the
newly formed tumor. As a next step, future metastatic
cells have to free themselves from the primary tumor
mass, have to degrade the surrounding extracellular
matrix including the basement membrane, must enter the
blood vessels and survive within the circulation (= the
seed). Once they have reached the target organ of the fu-
ture metastasis (= the soil), the tumor cell has to attach to
the endothelium in this organ and has to migrate through
it. When this process is accomplished, the metastatic can-
cer cell has - probably under the influence of local growth
factors – to start to divide again in order to form a clinic-
ally detectable metastasis. Once proliferation has started,
this metatsatic cycle resumes in order to spawn further
metastases originating from a metastasis.
Different cell adhesion molecules (CAMs) play vital
and opposing roles during this process. Due to their very
epithelial nature cancer cells form more or less tight
homologous epithelial cell to epithelial cell contacts at
the site of the primary tumors. Molecularly this encom-
passes often homologous CAMs which are part of desmo-
somes, tight junctions and gap junctions (see Table 1). In
addition, cell to basal lamina contacts (focal adhesions,
hemidesmosomes) are formed from those cells directly
adjacent to a basal lamina. In order to escape from the pri-
mary tumor, the proteins forming these junctions have to
be down-regulated in order to allow cell migration. The
contact of epithelial cells to the basal lamina not only hin-
ders migration but also prevents cell death. If a normal
epithelial cell looses the contact to the basal lamina, a
special form of detachment-induced apoptosis, termed
anoikis by Steven Frisch [20], is triggered as the cell’s
integrins are detached from their ligands in the basal
lamina. As mesenchymal cells do not necessarily have
a direct contact to the basal lamina, they are not sub-
ject to anoikis and the EMT would therefore aid sur-
vival of the loosened cancer cells.
After EMT has enabled the tumor cells to migrate out

of the primary tumor, they have to enter circulation and
survive within it (Figure 3). Later, they must adhere to
the microvascular endothelial cells at the site of the tar-
get organ and by this adhesion they have to communi-
cate to the endothelial cells to open their cell junctions.
This allows the passage of the cancer cell through the
endothelium to the connective tissue space of the host
organ. Again, CAMs mediate this process, however, these
CAMs are different from those forming the intra-epithelial
cell adhesion. Here, heterologous CAMs mediating cell ad-
hesion between different cell types – tumor cells and endo-
thelial cells - are important. Similarly to the mimicry of the
EMT, cancer cells evading circulation mimic the leukocyte
adhesion cascade (see Table 2). The CAMs and their li-
gands used in this adhesion are selectin glycoconjugate
ligands, integrins and their extracellular matrix ligands,
ALCAM and ICAMs. In contrast to the epithelial CAMs,
which were down-regulated during EMT, these CAMs
were up-regulated as part of the mesenchymal phenotype
during EMT. These down- and up-regulations of cell adhe-
sion molecule expression are governed by transcription
factors which are important during gastrulation including
twist, snail, slug, brachyury and ZEB 1 and ZEB 2.
Circulating tumor cells (CTCs) are cells which have

already separated from the tumor and entered the
bloodstream. It has been demonstrated that the number
of CTCs in blood is an important prognostic marker for
breast [33], prostate [34], lung [35], bladder [36] and
colon [37] cancer patients. CTCs are a heterogeneous
population of tumor cells, some of them presumably
underwent EMT and hence possess mesenchymal features,



Table 1 Homologous CAMs

Type of
junction

Type of protein Protein Gene name Function

Desmosome Cadherin
(calcium-dependent)

Desmoglein 1, Desmoglein 2,
Desmoglein 3, Desmoglein 4

DSG1 DSG2, DSG3,
DSG4

Play important roles in cell adhesion, ensuring that cells
within tissues are bound together. Cadherins behave as
both receptors and ligands.

Desmocollin 1, Desmocollin 2,
Desmocollin 3, Desmocollin 4

DSC1 DSC2 DSC3

Catenin Junction plakoglobin (JUP) JUP JUP can bind to the desmoglein I.

Tight
junctions

Claudins Claudin 1 CLDN1 The main component of the tight junctions

Occludins Occludin OCLN The main component of the tight junctions

Cadherin E-cadherin CDH1 Loss of E-cadherin function or expression has been
implicated in cancer progression and metastasis.
E-cadherin downregulation decreases the strength of
cellular adhesion within a tissue, resulting in an
increase of cellular motility. This in turn may allow
cancer cells to cross the basement membrane and
invade surrounding tissues [21].

F11 receptor (JCAM) JAM-1 The ligand for the integrin LFA1, a platelet receptor

Catenins α-(E, N,T), β-, δ-catenins,
γ-catenin (or Junction
plakoglobin, JUP)

CTNNA1 (CAP102),
CTNNA2 (CAPR),
CTNNA3 (VR22),
CTNNB1, CTNND1,
CTNND2, JUP

Catenins belong to a family of proteins found in
complexes with cadherin cell adhesion molecules.
The primary mechanical role of catenins is connecting
cadherins to actin filaments, specifically in these
adhesion junctions of epithelial cells [22]. β-catenin
may play a role in telling the cell to stop proliferating,
as there is no room for more cells in the area.

The role of catenin in EMT has also received a lot of
recent attention for its contributions to cancer
development. It has been shown that HIF-1α can
induce the EMT pathway, as well as the Wnt/β-catenin
signaling pathway, thus enhancing the invasive
potential of LNCaP cells (human prostate cancer cells)
[23]. As a result, it is possible that the EMT associated
with upregulated HIF-1α is controlled by signals from
this Wnt/β-catenin pathway [23]. Catenin and EMT
interactions may also play a role in hepatocellular
carcinoma. VEGF-B treatment of hepatoma carcinoma
cells can cause α-catenin to move from its normal
location on the membrane into the nucleus and
E-cadherin expression to decrease, thus promoting EMT
and tumor invasiveness [24].

JUP protein is the only known constituent common to
submembranous plaques of both desmosomes and
intermediate junctions. JUP also associates with
classical cadherins such as E-cadherin; in that context.
Plakoglobin is O-glycosylated.

Cingulin Cingulin CGN Cingulin is specifically localized at tight junctions in
epithelial cells, unlike ZO-1, which is also detected
at adherens-type junctions in non-epithelial cells.
Cingulin interacts with ZO-1 and several other tight
junction proteins, in addition to interacting with actin
and myosin [25,26].

Actin α-, β-, γ-actins ACTA1, ACTA2, ACTB,
ACTG1, ACTG2

Participates in many important cellular processes,
including cell motility, cell division and cytokinesis,
vesicle and organelle movement, cell signalling, and
the establishment and maintenance of cell junctions
and cell shape.

Gap
junctions

Connexin
(or hemichannel)

Connexins GJA1, GJC1, GJB4 etc. Connexins are assembled in groups of six to form
hemichannels, or connexons, and two hemichannels
then combine to form a gap junction. The connexin
gene family is diverse, with 21 identified members in
the sequenced human genome.

The molecules forming homologous epithelial cell to epithelial cell tight contacts.
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Figure 3 The metastatic cascade. In early stage of the metastatic cascade EMT enables migration and intravasation of tumor cells. After extravasation
followed by MET metastasis is generated.
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while others have not and still represent with a more epi-
thelial phenotype. It has been demonstrated on groups of
patients with distinct breast cancer stages that CTCs with
mesenchymal markers are more typical for the late meta-
static stage [38] and provide for the reliable prognosis of
recurrence [39]. Another recently reported observation is
that mesenchymal CTCs in patients with advanced cancer
comprise multicellular clusters rather than single cells, in
contrast to epithelial ones [40]. The authors explained this
observation with the proliferation of the mesenchymal cell
that has undergone EMT and after proliferation differenti-
ated back into a more epithelially differentiated cell cluster
which, however, seems contradictory to the typical individ-
ual mesenchymal phenotype. Alternatively, the authours
hypothesized simultaneous EMT of a pre-existing cluster
of CTCs in the bloodstream mediated by TGF-β released
from platelets.
Despite the many efforts, the detection of CTCs still

suffers from technical complexities and non-reliability of
their isolation. These problems are due to the low abun-
dance and heterogeneity of CTCs. The CellSearch and
AdnaTest systems approved by the FDA in USA and by
EU authorities, respectively, are based on the detection
of epithelial markers. However, if the cells in the blood-
stream are more of the mesenchymal phenotype, some
important cell population might be missed by using
these isolation techniques. Currently there is no reliable
method and no defined list of markers for the detection
of dedifferentiated EMT-derived CTCs [41].

EMT and alternative splicing
More than 88% of human pre-mRNAs are alternatively
spliced, thus generating protein diversity in an organism
[42]. Alternative splicing events are regulated in a cell-
and tissue type-specific manner, at different develop-
mental stages or in response to extra-cellular stimuli and
activation of specific signalling pathways [43,44]. As
many of these processes occur during EMT, alternative
splicing is of importance in EMT as well (Figure 2). Ex-
amples of the best characterized EMT-dependent alter-
natively spliced genes are FGFR2, CD44, p120-catenin
and Mena.
The fibroblast growth factor receptor 2 (FGFR2) en-

codes for a fibroblast growth factor-activated transmem-
brane receptor tyrosine kinase and is the first discovered
example of EMT-related alternative splicing [45]. The



Table 2 Heterologous CAMs

Adhesion molecule
(receptor)

Gene name Localization and other information Ligand Gene name
of the ligand

Localization of the ligand and other information

Integrins

Integrin alpha
(CD11a)

ITGAL
(CD11A, p180)

Integrin alpha combines with the beta 2 chain (ITGB2) to form the
integrin lymphocyte function-associated antigen-1 (LFA-1). LFA-1
plays a central role in leukocyte intercellular adhesion through
interactions with its ligands, ICAMs 1–3 (intercellular adhesion
molecules 1 through 3), as a rolling and signaling molecule [27],
and also functions in lymphocyte costimulatory signaling.

ICAM1 (CD54) ICAM1 A member of the immunoglobulin superfamily.
A glycoprotein which is typically expressed on
endothelial cells and cells of the immune system.

Integrin beta-2
(CD18)

ITGB2
ICAM-1 can be induced by (IL-1) and (TNFα) and is
expressed by the vascular endothelium, macrophages,
and lymphocytes. ICAM-1 is a ligand for LFA-1
(integrin), a receptor found on leukocytes.Integrin alpha

M (ITGAM)
ITGAM
(CD11B, CR3A)

Integrin alpha M is one protein subunit that forms the
heterodimeric integrin alpha-M beta-2 (αMβ2) molecule, also
known as macrophage-1 antigen (Mac-1) or complement receptor 3
(CR3). αMβ2 is expressed on the surface of many leukocytes
involved in the innate immune system. It mediates leukocyte
adhesion and migration.

Integrin alpha
4 (CD49d)

ITGA4 VLA4 (α4β1-integrin) is found on leukocytes and endothelial cells. VCAM1 [28] VCAM1
(CD106)

VLA4-interections support lymphocyte rolling in
venules of the central nervous system in conjunction
with P-selectin or can directly mediate rapid adhesion
independent of P-selectin engagement [27].

Integrin beta-1
(CD29)

ITGB1 Fibronectin FN1 Fibronectin is a high-molecular weight glycoprotein
of the extracellular matrix [29]. Insoluble cellular
fibronectin is a major component of the extracellular
matrix. It is secreted by various cells. Fibronectin plays
a major role in cell adhesion, growth, migration, and
differentiation.

Altered fibronectin expression, degradation, and
organization are associated with a number of
pathologies, including cancer and fibrosis [30].

Integrin α4β7-integrin MADCAM-1 MADCAM1 MADCAM-1 is a cell adhesion leukocyte receptor
expressed by mucosal venules. It helps to direct
lymphocyte traffic into mucosal tissues. It can bind
both integrin alpha-4/beta-7 and L-selectin regulating
both the passage and retention of leukocytes. Isoform
2 lacking the mucin-like domain may be specialized in
supporting integrin alpha-4/beta-7-dependent
adhesion strengthening, independent of L-selectin
binding.

Selectins

P-selectin SELP P-selectin is expressed on activated endothelial cells and platelets.
Synthesis of P-selectin can be induced by thrombin, leukotriene
B4, complement fragment C5a, histamine, TNFα or LPS.

PSGL-1 (P-selectin
glycoprotein
ligand-1)

SELPLG
(CD16)

PSGL-1 is found on white blood cells and endothelial
cells. PSGL-1 can bind to all three members of the
selectin family however it binds to P-selectin with the
highest affinity.

P-selectin plays an active role in the rolling of leukocytes [27]. see above and: PSGL-1 was shown contribute to E-
selectin-mediated initial leukocyte capture and rolling
in vivo [31].E-selectin

(CD62E, ELAM-1)
SELE
(CD62E, ELAM-1)

E-selectin is expressed on activated endothelial cells. E-selectin is
not stored within the cell and has to be

PSGL-1 SELPLG
(CD16)
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Table 2 Heterologous CAMs (Continued)

transported to the cell surface. Synthesis of E-selectin follows
shortly after P-selectin synthesis, induced by cytokines such as IL-1,
TNFα and lipopolysaccharide (LPS). Shear forces can also affect
E-selectin expression. E-selectin may interact indiscriminately with
many glycoproteins and glycolipids [31].

ESL-1 (golgi
glycoprotein 1)

GLG1 ESL-1 is a glycoprotein and a variant of a receptor for
fibroblast growth factor.

ESL-1 is a major E-selectin ligand on leukocytes [31].

CD44 CD44 CD44 is expressed in a large number of mammalian
cell types. This protein participates in a variety of
cellular functions including lymphocyte activation,
recirculation and homing, hematopoiesis, and tumor
metastasis.

E-selectin was shown to play a pivotal role in mediating cell–cell
interactions between breast cancer cells and endothelial
monolayers during metastasis [32].

E-selectin plays an active role in the rolling of leukocytes [27].
The contribution of CD44 is significant only at the
later stages of the leukocyte recruitment cascade [31].

GlyCAM-1 GLYCAM1 In breast cancer the splice variant 4 of CD44 was
shown as a major E-selectin ligand in facilitating
tumor cell migration across endothelial monolayers
[32].

L-selectin (CD62L) SELL
(CD62L, LAM1)

L-selectin found on lymphocytes and preimplantation embryo.
It plays important roles in lymphocyte-endothelial cell interactions.

GlyCAM-1 is a proteoglycan ligand expressed on cells
of the high endothelial venules in lymph nodes.

CD34 CD34 A cell surface glycoprotein which functions as a cell-
cell adhesion factor. It may also mediate the
attachment of stem cells to bone marrow extracellular
matrix or directly to stromal cells.

Cells expressing CD34 are normally found in the
umbilical cord and bone marrow as hematopoietic
cells, a subset of mesenchymal stem cells, endothelial
progenitor cells, endothelial cells of blood vessels but
not lymphatics (except pleural lymphatics). CD34 is
also an important adhesion molecule and is required
for T cells to enter lymph nodes. It is expressed on
lymph node endothelia whereas the L-selectin to
which it binds is on the T cell.

MADCAM-1 MADCAM1 MADCAM-1 is a cell adhesion leukocyte receptor
expressed by mucosal venules. It helps to direct
lymphocyte traffic into mucosal tissues. It can bind
both integrin alpha-4/beta-7 and L-selectin, regulating
both the passage and retention of leukocytes.

PSGL-1 SELPLG
(CD16)

See above

The molecules which are responsible for the leukocyte adhesion cascade involved in the inflammatory response.
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second half of the third extra-cellular immunoglobulin-
like domain of the FGFR2 is encoded by one of two mutu-
ally exclusive exons IIIb (expressed in epithelial cells) or
IIIc (characteristic for mesenchymal cells). The functional
model suggests that epithelial cells expressing the FGFR2-
IIIb form specifically interact with fibroblast growth factors
produced by mesenchymal cells. Accordingly, the factors
expressed by epithelial cells interact with FGFR2-IIIc [46].
These interactions have been demonstrated to be import-
ant during embryonic development and limb outgrowth
and lung-branching morphogenesis. Remarkably, targeted
down-regulation of mesenchymal-specific FGFR2-IIIc iso-
form was shown to decrease metastatic ability of TSU-PrI
bladder cancer cells and to increase survival following
in vivo inoculation in mice [47]. Interestingly, alternative
splicing of a similar protein, namely FGFR3, is regulated by
snoRNA HBII-180C [48]. This finding implies that non-
coding RNAs regulate EMT through modulation of alter-
native splicing.
The CD44 gene encodes for a transmembrane protein

which maintains tissue structure by mediating cell-cell
adhesion [49]. The N-terminal domain of CD44 is extra-
cellular and interacts with the extracellular matrix gly-
cosaminoglycan hyaluronic acid (HA) facilitating the
binding of a number of extracellular ligands. The formed
complex initiates a downstream signaling cascade via the
interaction of the intracellular domain with binding part-
ners. The CD44 pre-mRNA comprises exons 1–5 at the
5’ end and exons 16–20 at the 3’ end that are spliced to-
gether into the standard isoform CD44s. This isoform is
the smallest and is present on the membrane of most
vertebrate cells. Between exons 5 and 16 are ten alterna-
tively spliced variable exons (v1–v10). These alternatively
spliced variants are longer than the standard isoform
of CD44 and the proteins encoded by these variants
show extended extracellular membrane-proximal regions
which form a glycosylated stalk-like structure providing
interaction sites for additional molecules [50]. The CD44E
isoform containing exons v8–10 is predominantly expressed
in epithelial cells correlating with the expression of E-
cadherin [51]. Remarkably, induction of EMT in cultured
cells resulted in a switch from CD44E to standard isoform,
and expression of the latter was upregulated in human
breast cancers and was correlated with the mesenchymal
marker N-cadherin in these tumors [52].
Splicing is not a particular feature of CD44, indeed,

CAMs in general are alternatively spliced. The most
remarkable example is DSCAM (Down Syndrome Cell
Adhesion Molecule) which has up to 18,000 splice
isoforms [53]. This Ig-like receptor is involved in in-
nate immunity and neural wiring and its gene is located
on 21 chromosome.
p120-Catenin regulates cadherin stability and modulates

Rho GTPase activity [54,55]. The isoforms containing exons
2 and 3 are expressed in mesenchymal cells. Epithelial cells
skip these exons producing a shorter protein isoform. Con-
sistently, EMT induces the expression of mesenchymal
p120-catenin isoform [56]. Rho GTPases are known to
regulate actin cytoskeleton and cell motility [57]. The full-
length mesenchymal isoform of p120-catenin can bind
RhoA GTPase, reducing its activity, and promote migra-
tion and invasiveness of the cells [58].
Mena (also known as Enah, mammalian enabled

homolog of Drosophila protein Ena) is expressed in vari-
ous cell types and regulates the branching actin fila-
ments [59]. The isoform which contains the exon 11a is
characteristic for epithelial cells and is not found in mes-
enchymal cells. Remarkably, it has been also found to be
expressed in primary tumor cells but not in invasive
tumor cells [60]. So far it is not clear what kind of func-
tional implications this protein has on EMT.
Recently genome-wide approaches were used to deter-

mine EMT-related alternative splicing signatures [61].
It was shown that EMT-related extensive changes in
alternative splicing are regulated by epithelial splicing regu-
latory proteins 1 and 2 (ESRP1 and ESRP2) [62]. These pro-
teins are present in epithelial cells. Their siRNA-mediated
knock down resulted in a splicing switch of FGFR2, CD44,
p120 and Mena genes to mesenchymal phenotype. The re-
verse effect was observed when the ectopic expression of
ESRP1 and ESRP2 was performed in mesenchymal cells.
Thus, there are clearly distinct profiles of alternative

splicing which allow discrimination between epithelial
and mesenchymal cell types.

EMT and non-coding RNAs
MiRNAs are one family of small (20–22 nucleotides)
non-coding RNAs. Their function is to regulate gene ex-
pression post-transcriptionally through binding to the
sites which are perfectly complementary, or which may
contain mismatches (“non-canonical sites”). These sites
are located in 3’ UTRs, however recent reports demon-
strate that miRNAs can also function through binding to
other regions of target mRNAs [63,64]. By binding to
target mRNAs, miRNAs play important roles in regulat-
ing diverse biological processes [65]. These processes in-
clude regulation of the EMT, in which various miRNAs
are involved [66]. Remarkably, the regulatory miRNA-
mRNA networks can be rapidly regulated [67]. It should
also be mentioned that another recently reported inter-
esting function of miRNAs, which may play a certain
role in EMT regulation, is paracrine-mode intercellular
signaling [68].
The miR200 and the miR205 families were shown to

be highly associated with EMT and a strong correlation
between the expression of the miR200 family and E-
cadherin expression in different cell lines and epithelial
tissues has been demonstrated [69,70]. During EMT,
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expression of miR-200 family is repressed by ZEB tran-
scription factors. These factors in turn are the targets for
miR-200 family thus comprising a double negative feed-
back loop [71]. It was shown recently that miR200c also
regulates EMT through targeting fibronectin, moesin and
other proteins that normally suppress cell migration and
resistance to anoikis [72]. Moreover, the same lab found
that miR200c targets a NF-κB-dependent neurotrophic
tyrosine receptor kinase, which also suppresses resistance
to anoikis, and this miRNA is down-regulated in highly
aggressive triple negative breast cancers [73]. Other EMT-
related downstream targets of the miR200 family are
miR141 inhibiting TGFβ2 [74] and miR200a suppressing
β-catenin (CTNNB1) [75].
The EMT-related transcription factors have been de-

scribed as transcriptional regulators of miRNAs as well.
For example, miR21 is abundant in various tumors and
known to induce metastasis through EMT. The promoter
regions of miR21 contain consensus E-box sequences com-
prising binding sites for ZEB1 [76]. Binding of ZEB1 in-
duces transcription of miR21 [77]. MiR10b is also known
to be associated with cell migration, invasion, and metasta-
sis of breast cancer cells. It was shown that the transcrip-
tion factor twist can bind to the E-box element close
to the predicted promoter of miR10b and activate its
transcription, thus promoting twist-mediated EMT [77].
Overall regulation of miR10b is complex and context
dependent: ZEB1 increases the expression of miR10b in
colorectal cancer cells but decreases expression in breast
cancer cells [74]. Similarly, snail reduces the expression of
miR10b in human breast cancer cells [77]. These data sug-
gest that miRNAs can be considered as markers for EMT
through the activity of EMT-related transcription factors.
MiRNAs were shown to be associated with the TGFβ

signaling pathway. The TGFβ-mediated induction of EMT
in mammary epithelial cells results in loss of tight junc-
tions and cell polarity and up-regulates the expression of
miR155 [78]. The target of miR155 is RhoA which is im-
portant for the control of actin cytoskeleton and cell inva-
sion. RhoA contains three conserved regions which are
potential binding sites for miR155 [78]. Down-regulation
of RhoA leads to actin cytoskeleton rearrangements and
increased cell motility [79].
The TGFβ-induced EMT in mammary epithelial cells

also leads to the higher expression levels of miR29a and
miR21 [78,80]. Ectopic expression of miR29a suppresses
the expression of tristetraprolin and promotes to EMT
in cooperation with the Ras pathway [80].
It has been demonstrated that miR9 regulates the mRNA

encoding for E-cadherin [81]. Hence the increased expres-
sion of miR9 induced EMT in human mammary epithelial
cells [81].
Remarkably, it has been demonstrated recently that cir-

culating miRNAs in plasma of metastatic breast cancer
patients can indicate their CTC status [82]. Circulating
miRNAs are easier to isolate and handle than CTCs,
which will probably make them prognostic markers of
choice in future.
Long non-coding RNAs (lncRNAs) are an emerging

class of RNAs longer than 200 nt. Our current under-
standing of their functional role is limited, however
there are reports describing their involvement in the
regulation of gene expression, chromatin remodeling, tran-
scription, post-transcriptional RNA processing and cancer
progression [83]. Metastasis-associated lncRNAs MALAT1
(8000 nt), HOTAIR (2200 nt) and ANRIL (3800 nt) are
up-regulated in some tumors and can be potentially
considered as EMT-related as they regulate EMT
transcription [84]. More specifically, siRNA-mediated
MALAT1 silencing resulted in down-regulation of the
EMT-associated transcription factors ZEB1, ZEB2 and
slug, and up-regulation of E-cadherin [85]. Moreover,
MALAT-1 promoted EMT by activating the Wnt signal-
ing pathway. It also has been demonstrated that MALAT-
1 levels were significantly increased in primary tumors
that subsequently metastasized comparing to those tu-
mors that did not metastasize.

Small molecule compounds modulating EMT
There are numerous kinases involved in TGF-β, Wnt,
hedgehog and other signalling pathways regulating EMT
and thus malignant progression. The basis of modern
molecular targeted cancer therapeutics is the develop-
ment of small molecule inhibitors capable of binding to
the ATP-binding site of the dysregulated kinases. Thus
the majority of the compounds affect EMT target kinases.
For example, gefitinib and erlotinib, which are competitive
inhibitors of EGFR, currently used for the treatment of ad-
vanced carcinomas, also demonstrate a protective effect
against pulmonary fibrosis and hepatic fibrosis/cirrhosis,
which supports their EMT-inhibiting activity [86,87].
Other well-known compounds are antiangiogenic drugs
sorafenib and sunitinib that inhibit VEGFR and PDGFR,
exhibit antifibrotic effects in the liver and have been dem-
onstrated to inhibit EMT in in vitro cell culture models
[88-90]. Compounds EW-7195 and EW-7203 target TGF-
β type I receptor kinase/activin receptor like kinase-5
(ALK5) in a similar way, inhibiting TGF-β-induced EMT
of mammary epithelial cells and preventing breast cancer
metastasis to lung [91,92].
The drug BI 5700 directly inhibits kinase IKK2, a

member of NF-κB signaling pathway whose activation
causes EMT, and which has been demonstrated to revert
EMT in metastasizing mouse colon carcinoma [93]. An-
other compound SL0101 targets ribosomal protein S6
kinase (RSK)-2 which is an important component of
RON and TGF-β signaling pathways [94]. Both pathways
regulate EMT, and inhibition of RSK-2 results in
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suppression of EMT-associated cell migration in an
in vitro experimental system [94].
Interestingly, the complete reversal of EMT in vitro

was achieved when a combination of the inhibitors of ki-
nases TβRI (inhibitor SB431542) and ROCK (inhibitor
Y27632) was used [28]. SB431542 down-regulate ZEB1
and ZEB2 levels, thus blocking mesenchymal gene ex-
pression of TGF-β-induced mesenchymal renal tubular
epithelial cells. The Rho pathway inhibiting Y27632 was
necessary to fully eliminate mesenchymal actin stress
fibers.
Another type of small molecule modulator 4Ei-1 is a

non-toxic nucleotide analogue which prevents the asso-
ciation of eIF4E and the mRNA cap. It inhibited cap-
dependent translation in a dose-dependent manner in
zebrafish embryos without causing developmental ab-
normalities and prevented eIF4E from triggering EMT
in zebrafish explant model [95]. This compound can be
considered as a potential anti-cancer drug and investiga-
tion of its effect on the tumors would be of a great
interest.
Recently a high-throughput assay was developed to

screen for small molecules interfering with EMT initi-
ated by growth factor signalling using a model carcin-
oma reporter cell line NBT-II [96]. In this assay both
cell growth and cell migration can be analysed simultan-
eously via time-course imaging in multi-well plates. The
authors have validated several compounds targeting
ALK5, MEK, and SRC kinases as efficient EMT inhibi-
tors. This work highlights the growing interest in the
small molecule compounds able to modulate EMT. Me-
tastases are responsible for >90% of the cancer associ-
ated deaths. Therefore new strategies to prevent EMT
which leads to metastases formation might be a promis-
ing novel approach in oncology.

Conclusions
Epithelial-mesenchymal transition remains in the focus
of a large number of researchers today due to its funda-
mental nature and important clinical implications. Non-
coding RNAs and alternative splicing switches discussed
in this review play important roles in EMT and cancer
progression and can serve as markers for distinct epithe-
lial or mesenchymal states of cells. Also, there are a
growing number of discovered small molecules, belong-
ing mostly to kinase inhibitors, which modulate EMT
and have anti-cancer effect.
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