Email updates

Keep up to date with the latest news and content from Molecular Cancer and BioMed Central.

Open Access Research

FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation

Wei Huang12, Min Ye13*, Lian-ru Zhang4, Qun-dan Wu1, Min Zhang1, Jian-hua Xu13* and Wei Zheng12*

Author Affiliations

1 School of Pharmacy, Fujian Medical University, Basic Medicine Building North 205, No.88 Jiaotong Road, Fuzhou, Fujian 350004, China

2 Fujian Institute of Microbiology, Fuzhou 350007, China

3 Fuijan Provincial Key Laboratory of Natural Medicine Pharmacology, Fuzhou 350004, China

4 School of life Sciences, Xiamen University, Xiamen 361005, China

For all author emails, please log on.

Molecular Cancer 2014, 13:150  doi:10.1186/1476-4598-13-150

Published: 14 June 2014

Abstract

Background

Heat shock protein 90 (Hsp90) is a promising therapeutic target and inhibition of Hsp90 will presumably result in suppression of multiple signaling pathways. FW-04-806, a bis-oxazolyl macrolide compound extracted from China-native Streptomyces FIM-04-806, was reported to be identical in structure to the polyketide Conglobatin.

Methods

We adopted the methods of chemproteomics, computational docking, immunoprecipitation, siRNA gene knock down, Quantitative Real-time PCR and xenograft models on the research of FW-04-806 antitumor mechanism, through the HER2-overexpressing breast cancer SKBR3 and HER2-underexpressing breast cancer MCF-7 cell line.

Results

We have verified the direct binding of FW-04-806 to the N-terminal domain of Hsp90 and found that FW-04-806 inhibits Hsp90/cell division cycle protein 37 (Cdc37) chaperone/co-chaperone interactions, but does not affect ATP-binding capability of Hsp90, thereby leading to the degradation of multiple Hsp90 client proteins via the proteasome pathway. In breast cancer cell lines, FW-04-806 inhibits cell proliferation, caused G2/M cell cycle arrest, induced apoptosis, and downregulated Hsp90 client proteins HER2, Akt, Raf-1 and their phosphorylated forms (p-HER2, p-Akt) in a dose and time-dependent manner. Importantly, FW-04-806 displays a better anti-tumor effect in HER2-overexpressed SKBR3 tumor xenograft model than in HER2-underexpressed MCF-7 model. The result is consistent with cell proliferation assay and in vitro apoptosis assay applied for SKBR-3 and MCF-7. Furthermore, FW-04-806 has a favorable toxicity profile.

Conclusions

As a novel Hsp90 inhibitor, FW-04-806 binds to the N-terminal of Hsp90 and inhibits Hsp90/Cdc37 interaction, resulting in the disassociation of Hsp90/Cdc37/client complexes and the degradation of Hsp90 client proteins. FW-04-806 displays promising antitumor activity against breast cancer cells both in vitro and in vivo, especially for HER2-overexpressed breast cancer cells.

Keywords:
FW-04-806; Hsp90; Cdc37; HER2; Breast cancer